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Introduction 

An extensive effort has recently been completed by 
the Space Shuttle’s Reusable Solid Rocket Motor (RSRM) 
nozzle program to completely characterize the effects of 
multi-axial loading, temperature and time on the failure 
characteristics of three filled epoxy adhesives (TIGA 321, 
EA913NA, EA946). As part of this effort, a single general 
failure criterion was developed that accounted for these 
effects simultaneously. This model was named the “Multi- 
Axial, Temperature, and Time Dependent” or MATT 
failure 

Due to the intricate nature of the failure criterion, 
some parameters were required to be calculated using 
complex equations or numerical methods. This paper 
documents some simple but accurate modifications to the 
failure criterion to allow for calculations of failure 
conditions without complex equations or numerical 
techniques. 

Theoretical 

The following Multi-Axial Temperature and Time 
(MATT) dependent failure model was originally 

AP2J2 +BPI, = 1 (1) 

Here J2 is the second deviatoric stress invariant, and II 
is the first stress invariant. A and B are shape parameters 
that define the ellipsoidal nature of the failure envelope. 
These parameters have been shown to be independent of 
temperature or time. 

For a constant P value, this failure criterion is 
equivalent to the Tsai-Wu‘ failure model and equivalent to 
a modified Drucker-Prager failure model’. 

P is a scaling factor that scales the failure envelope to 
a proper level for a given temperature and failure time. 
This factor is found using a linear cumulative damage 
model6 approach. The linear cumulative damage failure 
model has the following form. 

N, = [ [:! dtIX 

Here N, and P are experimentally determined failure 
parameters, oi is an applied stress as a function of time 
with a failure time tf. The linear cumulative damage 
equation can be simplified for the following basic loading 
conditions. 

For constant loading rate conditions: 

For constant stress (or creep) loading conditions: 

B 

h=(?) 

Using these simple relationships and normalizing the 
A and B parameters, the MATT failure criterion can be 
modified to the following form for constant loading rate 
evaluations: 

2 I - - 
A U B o 2 ( L ) ’  l + P  J 2  +Bo(%)’ I +  P I, = 1  ( 5 )  

For constant load studies: 

1 - 2 - ~ - 

A,Bo2t!J2 +B,tfSI, = 1 

Here the B, takes on additional meaning because it 
becomes a combined MATT failure parameter. B, 
contributes to definition of both shape and size of the 
failure ellipse (compare with equation 1). The & 
parameter noted in this equation can be different than that 
used in equation 1. Here, & is a shape parameter that is 
specifically normalized to the linear cumulative damage 
term seen in equations 5 and 6 (A in equation 1 can be 
normalized to anything). 



For the materials evaluated in this paper, it was 
determined that the Bo and the p parameters are a linear 
function of temperature: 

Adhesive Tensile 
TIGA 32 1 9% 
EA9 13NA 7% 
EA946 10% 

Here the q. be. mN, and bN terms are the traditional 
slope and intercept parameters, and T is the temperature. 

Shear 
11% 
7% 

22% 

Calculations of failure can be obtained by substituting 
the results of equations 7 and 8 into equations 5 and 6. As 
will be shown in subsequent sections, failure for a wide 
range of multi-axial, temperature, and time conditions can 
be defined by the MA= equation using only five 
coefficients (4. q. bg, mN, bN). 

Experimental 

Extensive test data were used to characterize failure of 
TIGA 321 and EA946, and limited test data were used to 
characterize failure of EA913NA. As will be seen, even 
with limited characterization data, accurate failure models 
are developed. Testing was conducted below the glass 
transition temperature for TIGA 321 and EA913NA. For 
EA946, testing was conducted in the glass transition 
regime. The results of this characterization are of 
particular interest due to this low glass-transition 
temperature. 

For this study, the time and temperature dependent 
nature of the adhesives was characterized using tensile 
adhesion test specimens. These tests were used to 
determine the mg. bp, mN, and bN terms. Shear adhesion 
tests were used to characterize the effects of multi-axial 
loading on failure. From these tests, the & parameter was 
obtained. Tests were conducted under temperature 
conditions that ranged from (20 OC to 45 "C), with failure 
times that ranged from several minutes to several hours, 
and with pure tension or pure shear. 

Verification of the accuracy of the failure model was 
evaluated using napkin ring test specimens and creep 
loading of tensile adhesion buttons. The materials were 
tested under temperature conditions that ranged from (20 
"C to 45 "C), with failure times that ranged from several 
minutes to several months, and with a wide range of multi- 
axial loading (tensiodcompression combined with shear). 

Results and Discussion 

The results of tensile and shear adhesion tests can be 
seen in the Figures 1-3 for the adhesives TIGA 321 and 
EA946. These figures include both the raw test data and 
the MATT predictions of failure. Each data point is an 
average of several tests (the number varies from 6 to 16 
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depending on the condition, the adhesive, and the test). 
The coefficients of variation for these tests are in Table 1. 

w .  I 

1 - ' 2 O O " c  Data 
-20 OC Pred. 
- A  "OC Data 
-30 OC M. 
'*'4ooCData 
-40 "C Red. 
- 0  -45 oc Data 
-45 o c  Pred. 

'b.- - - - o  
2 0 !  - I 

0 Time (sec.) 25m 

Figure 1. TIGA 321 Tensile Adhesion Data /Predictions 
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Figure 2. EA946 Tensile Adhesion Data Predictions 
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Figure 3. EA946 Shear Adhesion Data /Predictions 

Table 1. Coefficients of Variation for the Tensile 



Figures 5-8 show the multi-axial and creep test data 
and predictions that were used for verification of the 
material model for TIGA 321 and EA946. Each data point 
represents the average of 2 to 13 data points. Table 2 
contains the coefficients of variation for this testing 
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Figure 4. TIGA 321 Multi-Axial Data Predictions 
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Figure 5. EA946 Multi-Axial Data Predictions 
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Figure 6. TIGA 321 Creep Data Predictions 
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Figure 7. EA946 Creep Data Predictions 

Table 2. Coefficients of Variation for the Multi-& 
Cree Tests 
Adhesive 
TIGA 321 
EA9 13NA 21% 
E A946 23% 20% 

;ial and 

Conclusions 

The improved MAlT failure criterion has been shown 
to be accurate for a wide range of conditions. Coefficients 
of variation for all the data combined are seen in Table 3. 

Of particular interest is the accuracy of the model for the 
adhesive EA946. Failure for this adhesive is characterized 
and the model is verified for conditions that pass through 
the glass transition of the adhesive. The test data indicate 
the generality of the failure criterion for a wide range of 
materials (even through the glass transition). 
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